

EPWater Conference 2016

How is water innovation succeeding in Europe? Leeuwarden, The Netherlands - 10 February 2016

February 9th 2016, Leewarden CTRL+SWAN Side meeting

SWANP: Smart WAter Network Partitioning and Protection

Activities of

European Innovation Partnership on Water Action Group CTRL + SWAN

Cloud Technologies & ReaL time monitoring + Smart WAter Network

A. Di Mauro², A. Di Nardo³, M. Di Natale⁴, D. Musmarra⁴, <u>G.F. Santonastaso⁴</u>, F. Tuccinardi¹

¹ Communication person of EIP Ctrl+SWAN (Promete s.r.l. Naples, Italia)

nedhvdro

² Communication person of EIP Ctrl+SWAN and Responsible of AG Secretariat (Med.Hydro s.r.l. Second University of Naples, Aversa, Italia)

³ Coordinator of EIP Ctrl+SWAN (Department of Civil Engineering, Design, Building and Environment Second University of Naples, Aversa, Italia)

⁴ Member of EIP Ctrl+SWAN (Department of Civil Engineering, Design, Building and Environment Second University of Naples, Aversa, Italia)

A. Di Mauro, A. Di Nardo, M. Di Natale, D. Musmarra, G.F. Santonastaso, F. Tuccinardi

Contents

Smart Water Network

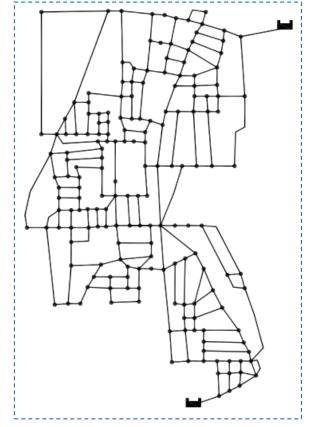
1. WATER NETWORK PARTITIONING

SWANP – Smart WAter Network Partitioning and Protection

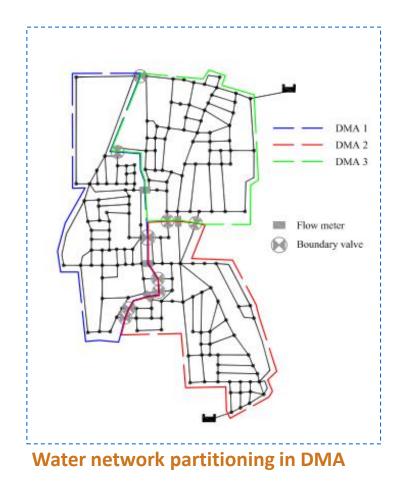
1. INTRODUCTION

2. GUI

- **3. HYDRAULIC ANALISYS**
- 4. CLUSTERING/PARTITIONING


5. PROTECTION

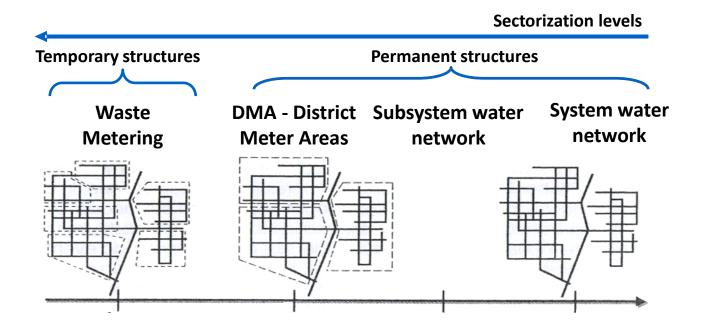
6. RESULTS


7. PERFORMANCE INDICES

Smart WAter Network – 1. Water Network Partitioning

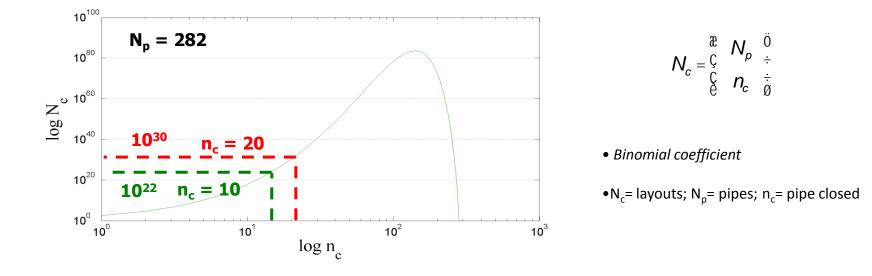
Water Network Partitioning (WNP) is a methodology that consists in dividing a Water Distribution System (WDS) in subsystems or District Meter Areas (DMAs) by using *flow meters* and *gate valve* (boundary valves), introducing the paradigm of Divide and Conquer

Original Water Distribution Network



Smart WAter Network – 1. Water Network Partitioning

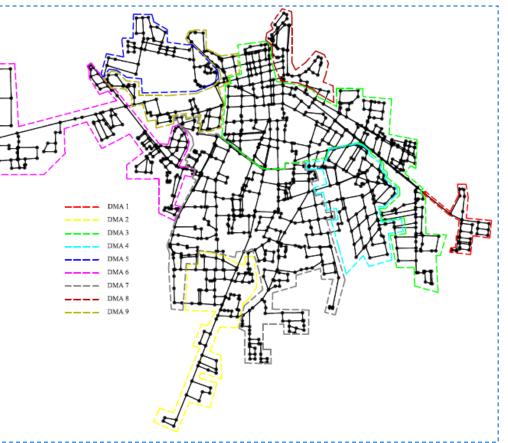
WNP allows to improve the water network management, in particular to:


- Evaluation of the hydraulic balance in order to recognize network reliability
- Localization and reduction of water leakages
- Pressure control to reduce water losses
- Monitoring network performances and water demand
- Protection from contamination

WNP is based on the identification of **District Meter Areas** (DMA):

Main WNP drawbacks:

- Availability: the partitioning decreases the network redundancy traditionally used in the design of WDS (Mays, 2000);
- Effectiveness: the partitioning can significantly increase energy dissipations caused by pipe closures (*Di Nardo and Di Natale, 2011*);
- Economy: it is necessary to contain costs to buy, install and repair flow meters and boundary valves (Wrc/WSA/WCA Engineering and Operations Committee, 1994)
- Computational complexity: it is necessary to decrease the number of possible partitioning of a water network that is huge (*Di Nardo and Di Natale, 2011*)



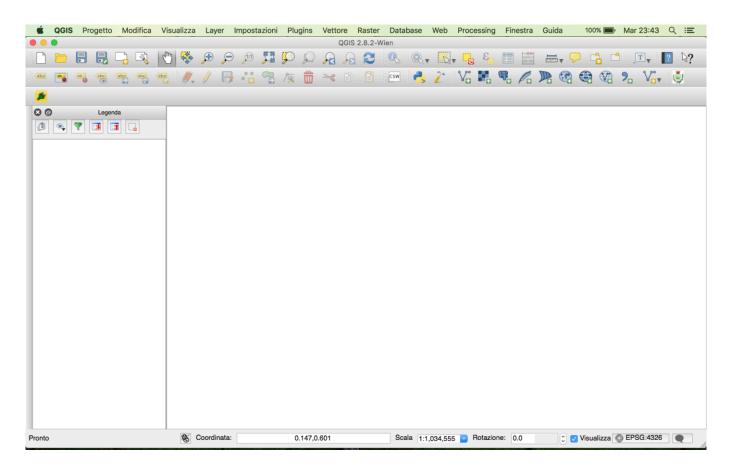
Smart WAter Network – 1. Water Network Partitioning

Our research group has developed a tool for the **automatic definition** of **shape** and **dimension** of **permanent DMAs** or, in other terms, of the number of nodes belonging to each DMA and the **positioning** of **flow meters** and **boundary valves**.

The software has been tested on several case-study real WDNs, among which the WDN of the city of **Matamoros** (Tamaulipas, Mexico) .

Number of nodes, n	1,283	
Number of links, m	1,651	
Number of reservoirs, r	9	
Hydraulic head of reservoirs [m]	29.0; 31.46; 26.99; 28.14; 36.06; 36.26; 26.12; 30.64; 30.73	
Total pipe length, L _{TOT} [km]	376.6	Later -
Minimum ground elevation, z_{\min} [m]	5.33	
Maximum ground elevation, z _{max} [m]	12.9	D
Pipe materials	PVC and AC	D
Pipe diameters [mm]	76; 95; 152; 190; 238; 300; 338; 380; 428; 476; 508; 600; 762; 914	D
Average demand, Q [m ³ /s]	0.987	D
Peak demand, Q [m ³ /s]	1.342	
Design pressure, h* [m]	12	
$h_{\rm FP}$ [m]	5	

AC, asbestos cement; PVC, polyvinyl chloride.


Smart WAter Network Partitioning and Protection - 1. Introduction

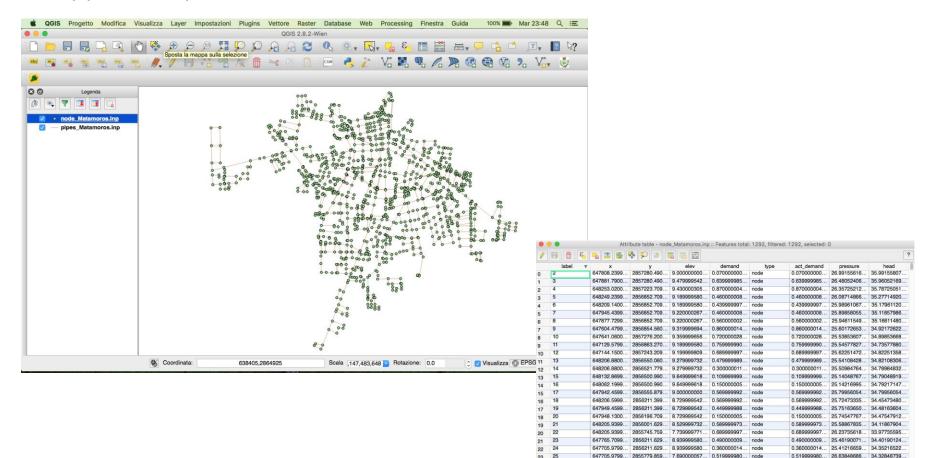
<u>SWANP 3.0</u> is the 3rd release of an hydraulic software devoted to water network modelling, analysing, partitioning and protecting. Its acronym stands for *Smart WAter Network Partitioning and Protection.*

- ✓ the decision-maker that provides different solutions comparing network layouts with some hydraulic and protection performance indices;
- ✓ integrating two different algorithms based on multilevel and edge betweenness community techniques for water network partitioning;
- novel algorithm based on a multi-objective function, for water network protection from accidental or intentional contamination based on backflow attack model.

Smart WAter Network Partitioning and Protection - 1. Introduction

The SWANP software is integrated in a **QGIS software**, which is open source software to manage, visualize, modify and analyse the geographic data. By installing the SWANP plug-in for QGIS it is possible use all SWANP functions and, simultaneously, all analysis and visualization instruments provided by the QGIS. The GUI (graphic user interface) of SWANP tools for QGIS uses the QT4 graphic libraries while the functions of the SWANP are developed in Python 2.7.

The GUI (Graphic User Interface) of SWANP is composed by 5 main sections:


- ✓ Hydraulic analysis
- ✓ Partitioning
- ✓ Protection
- ✓ Results
- ✓ Performance Indices

		SWANP				
Hydraulic Analysis	Partitioning	Performance Indices	Protection	Resuls	Credits	Help
Path	ı					
Net	work		Sel	ect the file		
DE	DA Analisys		Select time			
Hydraulic Analysis Partitioning Performance Indices Protection Resuls Credit Path Select the file Select the file Select time Image: Select time </td <td></td> <td></td>						
Network Select DDA Analisys Select time RUN EP PDA Analisys Select time Service pressure Select time	s					
PC	A Analisys					adits Help
Se	ervice pressure		Select time			
	RUN		EF	S		

Smart WAter Network Partitioning and Protection - 3. Hydraulic analysis

SWANP 3.0 can performs the steady-state simulation of a Water Network Distribution by integrating the dynamic library of the EPANET 2.0 software.

It is possible using a **Demand Driven Analysis (DDA)** or **Pressure Driven Analysis (PDA)** approach in which, starting from topologic and hydraulic and water demand INPUTs, pressure nodes and pipe flow are provided.

Mostra tutti gli elementi ,

647760.4799... 2855779.859... 7.690000057... 0.680000007... node

0.680000007... 26.62385368... 34.31385421

Smart WAter Network Partitioning and Protection - 4. Clustering/Partitioning

SWANP 3.0 allows defining automatically an optimal partitioning of a water network (**WNP**) using different algorithms. The proposed procedure is subdivided in two phases:

- a) the **clustering**, aimed to define the shape and dimension of network subsets based on graph theory;
- b) The **partitioning** that consists in the definition of the best position of the flow meters and the boundary (or gate) valves.

		SWANP				
Hydraulic Analysis	s Partitioning	Performance Indices	Protection	Resuls	Credits	Help
[]	0	Select the	efile	
	Clustering					
	clustering algorithm	n DMA number				
	weight node	weight link		Clustering		
	none	none	•			
	Partitioning					
	Boundary pipes	Flow Meters				
				Partitioning		

To perform the **clustering** phases, two different algorithms are proposed based on **graph partitioning** and **community structure**.

1) MLRB (MultiLevel Recursive Bisection): a **graph partitioning** algorithm borrowed from a technique of Computer Science, developed in order to solve problems that need huge computational power like, for example, simulations based on finite element methods that require distribution of the finite element mesh among different processors.

2) EBC (Edge Betweenness Community): a **community structure** algorithm borrowed from social network theory (SNT). As in a social network, the importance of each element of water network depends on the interrelation degree with other elements.

Clustering		
clustering algorithm	DMA number	
MLRB ᅌ		Clustering
weight node	weight link	Clustering
none	none ᅌ	

Smart WAter Network Partitioning and Protection - 4. Clustering/Partitioning

The **partitioning** phase consists in to define the best position of the **flow meters** and **boundary (or gate valves)** to insert in the boundary pipes (or edge-cuts) between DMAs previously obtained by clustering algorithms. This goal is obtained by using a heuristic optimization method based on a Genetic Algorithm (GA) is used maximizing the total node power of the network.

$$FO = \max\left(\gamma \sum_{i=1}^{n} Q_i H_i\right)$$

Partitioning		
Boundary pipes	Flow Meters	
		Partitioning

Smart WAter Network Partitioning and Protection - 5. Protection

Water distribution networks are exposed to different potential sources of accidental and intentional contamination.

Accidental contamination

- ✓ occasional bad source water quality
- \checkmark dysfunction of chlorine stations
- ✓ pipe breaks
- ✓ etc.

Malicious attack

- intentional introduction of a contaminant at the network sources
- backflow attack (injection of a contaminant in a network pipe through a pump system that allows to overcome the pressure gradient of network pipes)

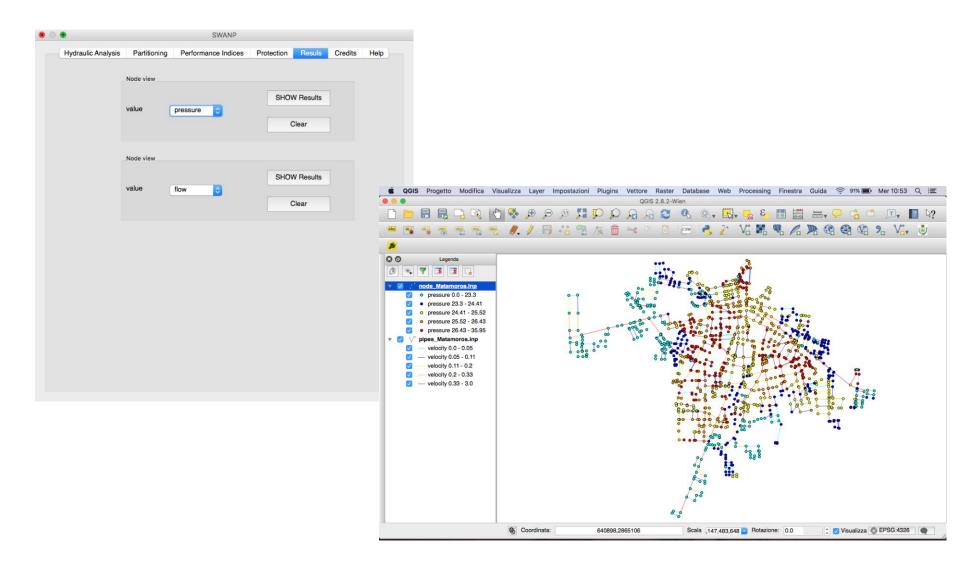
Smart WAter Network Partitioning and Protection - 5. Protection

0			SWANP						T L -			-	:
	Hydraulic Analysis	Partitioning	Performance Indices	Protection	Resuls	Credits	Help		Ine	CO	ntamin	ation	In
					Select the f	ile			Prot	ectio	n Perf	orma	nce
	Co	ntamination model											
	sel	lect type	LD50										
		ode	Contaminant solu		Compute				 ✓ 	the t	otal nu	ımhei	r of
	Ċ			Chity									01
									\checkmark	the i	numbe	r of e	expo
		undary pipes											•
			FO1	FO2	F03					than	the LD)50 (I	Neu
	Flo	w Meters		102	100				/	I			
									✓	leng	h of th	ie cor	ntan
					C	onta	minatio	on mo	del_				
					S	elect	t type				LD50		
					6			~					
								0					
						nod	e				Contar	ninan	t sol
							-				oonta		

mpact is measured by some Indices:

- exposed users (Neu),
- osed users that consumed more **J50**);
- minated pipes.

Contamination model		
select type	LD50	
node	Contaminant solubility	Compute


Smart WAter Network Partitioning and Protection - 7. Performance Indices

SWANP 3.0 allows to compute some traditional and innovative Performance Indices (PI) that provide information both on the whole network and on a sub-system or DMA. PI are organized in four category and tested in different publications:

- 1) Topological PI
- 2) Energy PI
- 3) Hydraulic PI
- 4) Protection PI

		SW	ANP				
lydraulic Analys	sis Partitioning	Performance I	ndices	Protection	Resuls	Credits	Help
				De	sign pressure		
		Open	Original N	let			
	-		pen Net 1	Se	rvice pressure		
			Jenneti				
		0	pen Net 2		Clear		
	Pls DDA		PIS PDA		Export Pla	s	
	Topologic PI	Energy PI	Hydrau	ic PI Prot	tection PI		
	Average Degree	Original Net	Net 1		Net 2		
	Topologic Diameter					_	
	APL						
	Density						
	Clustering coefficient						
	Meshedness						
	Betweenneess						
	Closeness					_	
	Eccentricity						
						_	
	Edge betweenness						
	Balance index						
	Flow meters						
	Gate valves						

SWANP 3.0 uses also the visualization instruments provided by the QGIS, to plot the result of hydraulic analisys, partitiong etc.

Thank you for your attention