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Summary

1. Optofluidic approach = jet waveguides
2. Non specific detection - Jet waveguides approach for UV fluorescence
spectroscopy

3. Specific detection - Jet waveguides approach for Raman spectroscopy



Liquid jet

CLANET et al.J. Fluid Mech. (1999), vol. 383, pp. 307-326

When v is sufficiently large, such that the kinetic
energy overcomes the surface energy, a
continuous liquid jet is formed up to a certain
length (breakup length), and then it breaks up
into drops.
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We = pvzg < 4 dripping regime
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We = pvzg >4 jetting regime

Liquid jet formation
The process of a liquid jet formation is related to the
magnitude of surface tension forces and to the

momentum of the jet.
The dynamic behavior is characterized by the Weber

number We:
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where p is the liquid density, v is the jet velocity, r is
the local radius of curvature, and o is and the surface
tension of the liquid.




Liquid jets as waveguides

nozzle ——

UV source
direction

water jet
- —_—
waveguide

|

fluorescence

optical fiber for
detection —

Non specific sensor based on UV autofluorescence: an UV
source excites natural fluorescence of compounds in
solution and is collected by means TIR
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The guidance effect is based on total internal reflection (TIR).
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Specific sensor based on Raman spectroscopy:

An optical fiber is used to excite the solution, the guide exploits TIR to
collect the signal which is transmitted to the coupling fiber.

The whole jet is excited = enhancement in the detected signal



Non specific sensor: UV autofluorescence + jet waveguide

Only the fraction of the light falling within the
waveguide critical angle will be coupled and .pump.or-
collected through TIR propagation. tubing derivation
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* High detection efficiency.
* Minimization of the source contribution in the detected
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* Absence of solution container (no fluorescence, no

0.2

Jet waveguide NA comparison with respect liquid core

waveguide (LCW) and Hollow core photonic crystal fiber cleaning reqUired)'
(HCPCF). * Simple configuration (self-aligning).
* Possible on-line monitoring (no sample pre-treatment).
LCW HCPCF Jet Waveguide * Low cost technology.
Nladding 1.29 1.14-1.17 1

*
Eftekhary et al. J. Appl Phys, 109, 113104 (2011) 5



Hydrocarbon detection: UV autofluorescence + jet waveguide

toluene naphthalene
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Hydrocarbons exhibit high fluorescence after g - -
UV excitation.
Toluene 0.72 ppm 1 ppm
. o-Xylene 0.1 ppm 10 ppm (total Xylenes
excited volume = 5.73l . - L . )
jetlength =16 mm Naphthalene 2.2 ppb -
jet@= 9/55 um G. Persichetti et al. "High sensitivity UV fluorescence spec-troscopy based on an
v=1.4m/s

optofluidic jet waveguide” Opt. Express 21 24219-24230 (2013) .
integration time=5s (40 repeated measurements)



Bacterial detection: UV autofluorescence + jet waveguide

Bacillus Clausii
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The same approach has been used also '
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UV autofluorescence + jet waveguide: low-cost approach

Within the framework of the ACQUASENSE project it was evaluated
the possibility to also use a low-cost instrumentation: a UV LED as

an excitation source and a photodiode as a detector.

naphthalene
7I T T T
6 o experimental data photodiode
107 linear fit 4
A H,0 +30 LOD = 0.02 ppm
linear fit spectrometer
< experimental data
- ———-H,0+3c
o 2
] P Ve
;10 = 3
= [
i [
Z [
& L
£ I
- L
£, 4
8 10+ b
® . .
@ L LOD = 0.018 ppm
D F
= L
=
3
107+ E
Foovvnin SRR B
| | | |
-3 2 1 0
10 10 10 10

concentration (ppmj

The experimental results show that using photodiode as
detector and UV LEDs of adequate power, it is possible to
achieve results similar to those that use spectrometers
and laser sources.
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(b) Portable UV autofluorescence sensor
prototype based on jet waveguide (right side)
developed in the framework of the national
project ACQUASENSE

stainless steel capillary
for jet ejection

‘ UV LED (265nm)
P=3mW

optical fiber used to deliver
the signals to the photodiode



Specific sensor: Raman spectroscopy+ jet waveguide
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Raman spectroscopy system: a fiber is used for the
excitation of the solution, the liquid guide collects
the Raman signal by means of TIR and send it to
the collection fiber.

It is excited the whole jet with consequent
increase of the detected signal.

High efficiency of excitation / collection

Specificity (specific Raman spectrum of the substance)
Absence of fluorescence due to the containment of the
solution

Simple configuration

Possible use in online monitoring (not necessary
solution pretreatment)




Portable device for Raman spectroscopy

capillary
laser 0 photometer‘
—
18 cm ' ' - ~
‘ - ) excitation
filter

4 fiber probe @ high pass 28 cm
filter
k

2 fiber probe:
excitation fiber - diameter 200 um and NA=0.22
detection fiber - diameter 600 um and NA=0.39

D1 ALTA TECNOLOGIA PER.
. . IL MONITORAGGIO INTEGRATO CLIMATICO-AMBIENTALE
source: diode laser emitting at 785 nm

Pmax = 500 mW
(output power at sample level: 120 mW)

detector: spectrophotometer with NA=0.39
1625 lines per mm holographic grating

slit width: 50 um

resolution: 10 cm™ at 810 nm
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Raman spectroscopy measurements
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Intensity (A.U.)

Raman spectroscopy measurements

1500~ ]

The Maximum Contaminant Level (MCL) allowed in in

drinking water is very highly demanding.
1000 1 Raman spectroscopy is based on a low sensitive effect.
so%
NO, Despite jet waveguide approach offers the possibility of
\ high excitation/collection efficiency, the detection at
500/ | trace level is precluded for most of the water pollutant.
D_ 1 | 1 | 1 | 1 _I
900 1000 1100 1200 1300 1400 1500 1600
Raman shift cm™
Contaminant Maximum contaminant Limit of detection (LOD)

level (EU)

Nitrate (NO;")

Nitrite (NO,") 0.5 ppm

possible detection

below MCL
Solfate (SO,") 250 ppm

Phosphate (HPO,*") - 200 ppm

Benzene (C.H,) - 40 ppm
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G. Persichetti, R.Bernini “ Water monitoring by optofluidic Raman spectroscopy for in situ applications” Talanta 155 (2016) 145-152.



Conclusions

Jet waveguide approach results a suitable strategy in water monitoring:
* UV autofluorescence spectroscopy = non-specific and high sensitive
detection

* Raman spectroscopy =2 highly selective detection






Jet waveguide — miniaturization

Advantages of on-chip platform 1 central fiber
. CLeps . for excitation (2)

high flexibility: the same on-chip

sensor can exploit two different

excitation approaches

orthogonal excitation (1)

high versatility: applicable to both
Raman and fluorescence

spectroscopy et dlameter: 150um

capillary

6 outer fiber
for detection

7 fiber probe:
1 excitation fiber - diameter 50 um and NA=0.56
6 detection fiber - diameter 50 um and NA=0.56

detector: spectrophotometer with NA=0.39
1600 lines per mm grating “_

slit width: 50 um resolution: 20 cm? 7 fiber probel,-’l

total internal reflection .-~

Experimental setup
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UV autofluorescence for specific detection: cyanobacteria

Use of fluorescence fingerprints for the estimation of cyanobacteria. Principal Component Analysis (PCA) is a
multivariate data analysis technique that is used to approximate a large data matrix through observed patterns.
Approximation of the data patterns is achieved by obtaining new, mutually independent, variables that are
mathematically represented by linear combinations of the original variables.
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: . Experimental data are obtained with
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e The wuse of different excitation
® Synechocystis sp. wavelength could help in further
discrimination of cyanobacteria.
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PC1 * The jet waveguide approach could

further increase  sensitivity and
decrease time measurements.
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